Redox Chemistry of Metal-Catechol Complexes in Aprotic Media. 5. 3,5-Di-tert-butylcatecholato and 3,5-Di-tert-butyl-o -benzosemiquinonato Complexes of \mathbf{Z} inc(II)

MARIO E. BODINI,* GEORGINA COPIA, RONALD ROBINSON, and DONALD T. SAWYER*

Received April 7, 1982

Reduction of mixtures of zinc(I1) and **3,5-di-tert-butyl-o-benzoquinone** (DTBQ) at mole ratios of 1:l and 1:2 in dimethyl sulfoxide yields several stable zinc(II)-catecholato (DTBC²⁻) and -semiquinonato (DTBSQ⁻) complexes: Zn^{II}(DTBSQ⁾⁺, $Zn^{11}(DTBC)$, $Zn^{11}(DTBSQ)$, and $Zn^{11}(DTBC)(DTBSQ)$. These complexes and their oxidation-reduction products have been characterized by cyclic voltammetry, UV-visible spectroscopy, and magnetic susceptibility measurements. The stability constants, K_f , for the $Zn^H(DTBSQ)^+$ and $Zn^H(DTBC)$ complexes have values in dimethyl sulfoxide of approximately 2 \times 10⁸ and 4 \times 10²⁷ M⁻¹, respectively. Formation of stable zinc(II)-semiquinonato complexes provides versatile one-electron redox pathways for the oxidation and reduction of the **zinc(I1)-catechol-quinone** system, which may be pertinent to the redox chemistry of related systems in biology

The previous papers of this series have been concerned with the redox reactions for the **3,5-di-tert-butylcatecholato** (DTBC²⁻) and o -semiquinonato (DTBSQ⁻) complexes of manganese(II, III, IV),^{\int} iron(II, III),² and vanadium(II, III, IV, V $)$.³ Because each of these metals is redox active within the potential range for ligand electron-transfer reactions,⁴ the electrochemical results are complicated by intramolecular charge-transfer processes. In particular, the formation and characterization of DTBSQ- complexes of the lower oxidation states of these metal ions have been precluded.

The zinc(I1) ion, which is redox inactive for the conditions where bound DTBC²⁻ and DTBSQ⁻ are electroactive, is a hard acid and forms strong coordinate bonds with oxo ligands. $5-7$ The latter characteristic should favor strong complexation of zinc(I1) by DTBC and DTBSQ; the degree of interaction should be equal to or greater than what it is with these ligands toward manganese $(II)^{I}$ and iron $(II)^{2}$ Preliminary observations indicate that addition of zinc(I1) ion to alkaline solutions of DTBC²⁻ retards the rate of ligand oxidation by air and stabilizes DTBSQ⁻ solutions.⁸

Hence, characterization of the redox chemistry of bound $DTBC²⁻$ and $DTBSQ⁻$ in their zinc(II) complexes provides important insights to the electron-transfer processes that occur within similar complexes of redox-active metal ions. The present paper summarizes the results of an electrochemical, spectroscopic, and magnetic characterization of the stable $DTBC²⁻$ and $DTBSQ⁻$ complexes of zinc(II) in acetonitrile (CH,CN), dimethylformamide (DMF), and dimethyl sulfoxide $(Me₂SO)$.

Experimental Section

Equipment. A three-electrode potentiostat (Bioanalytical Systems Model CV-1) and a Houston Instrument Model 100 Omnigraphic **X-Y** recorder were used for the cyclic voltammetric experiments. Controlled-potential coulometric electrolysis was accomplished with a Princeton Applied Research Model 173/ 179 potentiostat/digital coulometer.

A Leeds and Northrup electrochemical cell was used for the electrochemical measurements and was equipped with a Beckman platinum-inlay working electrode (area 0.23 cm^2) for the voltammetric experiments. The latter was polished with No. 3 alumina (Buehler Ltd. No. 40-6353) before each set of experiments. The auxiliary electrode was a platinum-flag electrode, which was isolated from the bulk solution by a glass tube with a medium-porosity glass frit at the end; it contained a concentrated solution of supporting electrolyte. The reference electrode was a Ag/AgCl (aqueous tetramethylammonium chloride) cracked glass-bead electrode, which was adjusted

to 0.000 V vs. SCE.⁹ The reference electrode was located inside a luggin capillary in the cell assembly. Platinum-mesh working and auxiliary electrodes were used for the controlled-potential electrolysis experiments.

The UV-visible spectra were obtained with Cary Model 17D and Beckman Model ACTACV spectrophotometers. The magnetic susceptibility measurements were made with a Varian EM-390 NMR spectrophotometer by the method of Evans¹⁰ as modified by Rettig¹¹ and made use of the paramagnetic shift of the methyl protons of Me4Si as an internal standard. Diamagnetic corrections were made.¹²

Reagents. Because the solvate waters of the $\text{Zn}^{\text{II}}(\text{ClO}_4)_2 \cdot 6\text{H}_2\text{O}$ salt interfered with the stoichiometric formation of the semiquinone and catechol complexes of zinc, $[Zn^{II}(DMU)_{6}] (ClO₄)_{2} (DMU =$ dimethylurea) was used as the source of $Zn(II)$ ions.¹³ The other reagents for the investigation included **3,5-di-tert-butylcatechol** (DTBCH,) (Aldrich), **3,5-di-tert-butyl-o-benzoquinone** (DTBQ), (Aldrich), tetraethylammonium hydroxide ((TEA)OH) (25% in methanol; Eastman), tetramethylammonium chloride (Aldrich), and tetramethylammonium perchlorate (TEAP) (G. Frederick Smith). Burdick and Jackson pesticide grade ("distilled in glass") solvents were used without further purification for all of the experiments: dimethylformamide (DMF), dimethyl sulfoxide (Me,SO), and acetonitrile (CH_3CN) . High-purity argon was used to deaerate the solutions.

Results

Electrochemistry. The limited solubility of the 1:1 zinc-**(II):3,5-di-tert-butylcatecholato** (DTBC) complex has precluded meaningful electrochemical measurements in $CH₃CN$, DMF, or Me₂SO. Attempts to prepare in situ solutions of this complex in DMF or $Me₂SO$ have been frustrated because it precipitates as a white amorphous solid, which slowly oxidizes

-
-
- Jones, S. E.; Chin, D. H.; Sawyer, D. T. *Inorg. Chem.* **1981**, 20, 4257.
Jones, S. E.; Leon, L.; Sawyer, D. T. *Inorg. Chem.* **1982**, 21, 3692.
Bosserman, P. J.; Sawyer, D. T. *Inorg. Chem.* **1982**, 21, 1545.
Stallings, M
- *20,* 2655.
- Cotton, F. A.; Wilkinson, *G.* "Advanced Inorganic Chemistry", 4th ed.; Wiley-Interscience: New York, 1972.
- Huheey, J. E. "Inorganic Chemistry: Principles of Structure and Reactivity", 2nd ed.; Harper and Row: New York, 1978; pp 276-280. Sawyer, D. T.; Kula, R. J. *J. Electroanal. Chem.* **1962, 3,** 407.
-
-
- Eaton, D. R. *Inorg. Chem.* **1964**, 3, 1268.
Sawyer, D. T.; Roberts, J. L., Jr. "Experimental Electrochemistry for
Chemists"; Wiley-Interscience: New York, 1974; pp 44–46, 144–145, 336-339.
- Evans, D. F. *J. Chem. SOC.* **1959,** 2003.
- (11) Rettig, M. F., private communication, University of California, Riverside, CA.
- Figgis, B. N.; Lewis, J. "Modern Coordination Chemistry"; Lewis, J., (12)
- (13) van Loenwen, P. W. N. M.; Groenwald, W. L. *Inorg. Nucl. Chem. Lett.* **1961,** *3,* 145.

^{*}To whom correspondence should be addressed: M.E.B., Pontifica Universidad Catolica de Chile: D.T.S., University of California.

Figure 1. Cyclic voltammograms in dimethyl sulfoxide (Me₂SO) (0.1 M tetraethylammonium perchlorate (TEAP)) of (a) 3.0 mM 35 di-tert-butyl-o-benzoquinone (DTBQ), (b) 3.0 mM DTBQ plus 3 mM $[Zn^{II}(DMU)_{6}]$ (ClO₄)₂, (c) 3.0 mM DTBQ plus 1.5 mM $[Zn^{II}$ - $(DMU)_{6}$](ClO₄)₂, and (d) 3.0 mM DTBQ plus 1.0 mM [Zn^{II}-(DMU)6](C104), (scan rate 0.1 **V s-l;** Pt electrode (area 0.23 cm2)).

in the air. Solutions of this complex in $CH₃CN$ remain clear, but film formation on the electrode surface interferes with the electrochemical measurements.

So that these problems could be circumvented, 3,5-di**tert-butyl-o-benzoquinone** solutions that contain equimolar, or less, quantities of $[Zn^H(DMU)_6](ClO_4)_2$ have been reduced electrochemically (cyclic voltammetry and controlled-potential coulometry). The results provide insight into the formation and stability of zinc(II)-catecholato (DTBC) and $-o$ -semiquinonato (DTBSQ) complexes. Figure 1 illustrates the cyclic voltammograms for 1:1, 1:2, and 1:3 combinations of $[Zn^{II}$ - $(DMU)_{6}$](ClO₄) and DTBQ in Me₂SO. The results indicate that reduction of DTBQ in the presence of an equimolar quantity of Zn(I1) occurs at a peak potential that is 0.26 V more positive than for DTBQ in a metal-free solution. For the 1:l Zn(I1):DTBQ combination the cathodic peak height corresponds to a two-electron process; reduction of free semiquinone (DTBSQ⁻) (-1.48 V vs. SCE) is not observed.

Controlled-potential electrolysis of a 1:1 combination of $Zn(II)$ and DTBQ at -0.50 V vs. SCE requires two electrons/DTBQ and yields a colorless solution, which exhibits voltammetric oxidation peaks at -0.03 V vs. SCE and at $+0.23$ V in its cyclic voltammogram (Figure 1). Controlled-potential electrolysis of this solution at **+0.05** V vs. SCE indicates that the product complex is oxidized by a one-electron process and yields a blue solution. Controlled-potential electrolysis of the latter solution at +0.40 V vs. SCE also is a one-electron process and yields a brown-red solution (similar in appearance to the original Zn(I1)-DTBQ combination).

The cyclic voltammogram for a $Me₂SO$ solution that contains a 1:2 mole ratio of $[Zn^{11}(DMU)_{6}(ClO_{4})_{2}]$ relative to DTBQ (Figure 1) includes reduction peaks at -0.28 V vs. SCE, -0.37 V, and -0.50 V, plus a small, ill-defined peak at $-1,2$ V. Scan reversal yields a small anodic peak at -1.15 V, a

Figure 2. Cyclic voltammograms in dimethyl sulfoxide (Me₂SO) (0.1) M TEAP) of (a) 3 mM **3,5-di-tert-butyl-o-semiquinone** anion radical (DTBSQ⁻ \cdot), (b) 3 mM DTBSQ⁻ \cdot plus 3 mM [Zn^{II}(DMU)₆](ClO₄)₂, (c) 3 mM DTBSQ⁻- plus 1.5 mM $[Zn^H(DMU)_6](ClO_4)_2$, and (d) 3 mM DTBSQ⁻ \cdot plus 1 mM $[Zn^{II}(DMU)_6](CIO_4)_2$ (scan rate 0.1 V **s-l;** Pt electrode (area 0.23 cm2)).

shoulder at -0.45 V, and well-defined peaks at -0.30 and $+0.20$ **V.**

The cyclic voltammogram for a 1:3 mole ratio of $[Zn^{II} (DMU)_{6}$](ClO₄)₂ relative to DTBQ (Figure 1) is similar to that for the 1:2 combination, but the relative peak heights are different. The most intense reduction peaks occur at -0.28 V vs. SCE and at -0.50 V vs. SCE, and the peak at -0.37 V is small. Also, an additional redox couple ($E_{p,c} = -1.35$ V, $E_{p,a} = -1.17 \text{ V}$) is clearly evident. Another important difference is that the shoulder at -0.45 V has a much larger current.

So that it could be ascertained whether the semiquinone anion radical (DTBSQ-) interacts with zinc ions or is involved as a redox intermediate, 1, 2, and 3 equiv of DTBSQ- have been combined with 1 equiv of $Zn(II)$ (Figure 2). When 1 equiv of $Zn(II)$ is added to 1 equiv of DTBSQ⁻, the solution color changes from blue to blue-green and yields the cyclic voltammogram illustrated in Figure 2b. The latter indicates that a small fraction of the DTBSQ undergoes disproportionation to free quinone and bound catechol. (The reduction peak at -1.00 V is due to a slight excess of $Zn(II)$.) A noteworthy feature of the cyclic voltammogram is that for an initial negative scan the reduction peak at -0.27 V corresponds to a one-electron process. An initial positive scan yields a one-electron-oxidation peak at +0.3 V, which, upon scan reversal, gives a two-electron-reduction peak at -0.27 V.

The cyclic voltammogram for a 1:2 combination of $Zn(II)$ and DTBSQ⁻ (Figure 2) indicates that the solution contains a significant fraction of a species with an anodic peak at -0.1 V. Hence, for these conditions disproportionation of DTBSQoccurs to a greater extent than for a 1:l combination. An initial negative scan for the 1:2 $Zn(II)$:DTBSQ⁻ combination yields voltammetric reduction peaks at -0.27 V (shoulder), -0.37 V, and -0.50 V; with scan reversal there is a new anodic peak at -0.3 V (Figure 2). The latter is not observed for the

Figure 3. Absorption spectra in Me₂SO (0.1 M TEAP) of DTBSQ⁻ and of $[Zn^{II}(DMU)_{6}]$ (CIO₄)₂-DTBSQ⁻ mixtures with mole ratios of (a) 1:1, (b) 1:2, and (c) 1:3. Each solution had an initial concentration of **5** mM DTBSQ-.. The molar absorptivities, **t,** are in relation to the total DTBSQ⁻ concentration.

1:1 combination. When 3 equiv of DTBSQ⁻ is combined with 1 equiv of $Zn(II)$, the blue color of free DTBSQ⁻ is changed to yellow-green. The cyclic voltammogram for this condition appears to be a composite of those for the 1:2 combination and free DTBQ.

The electrochemical results for these Zn(I1) and DTBC or DTBSQ combinations in DMF and $CH₃CN$ solutions are similar to those for $Me₂SO$ solutions (Figures 1 and 2). In $CH₃CN$ the cyclic voltammogram for the 1:1 $Zn(II):DTBQ$ combination exhibits two one-electron processes at +0.27 and -0.05 **V** for an initial negative scan.

When solutions that contain equimolar amounts of DTBQ and $DTBCH₂$ are combined with 2 equiv of base, a blue solution results, which has electrochemical and spectroscopic properties that are characteristic of the free $DTBSQ^{-1}$ anion radical. Addition of $Zn(II)$ to these solutions to yield $Zn (II):DTBSQ⁻$ mole ratios of 1:1 and 1:2 results in some disproportionation of the DTBSQ⁻, especially for the 1:2 combination. The observations are analogous to those for electrogenerated DTBSQ-.

Optical Spectroscopy. The UV-vis spectra of DTBQ, $DTBSQ^-$, and $DTBCH₂$ have been presented in a previous paper.⁴ Figure 3 illustrates spectra for free DTBSQ⁻ and for 1:1, 1:2, and 1:3 mole ratios of $Zn(II)$ and DTBSQ⁻ in Me₂SO. The shoulder at 400 nm, which corresponds to the absorption maximum for free $DTBO⁴$ increases as the ratio of $DTBSQ⁻¹$ relative to $Zn(II)$ is increased. This is consistent with a metal ion induced disproportionation of DTBSQ- to DTBQ and DTBC²⁻. The DTBSQ⁻ complexes of $Zn(II)$ have an absorption maximum at 740 nm. Reference to Figure 3 indicates the presence of an isobestic point at 470 nm, which is consistent with an equilibrium between a Zn(I1)-DTBSQ complex and the disproportionation products, DTBQ and Zn"(DTBC). The fact that a solution with a 1:1 $Zn(II)$:DTBSQ⁻ mole ratio does not exhibit significant disproportionation (absence of absorption at 400 nm for DTBQ, Figure 3) confirms that a stable $Zn^{11}(DTBSQ)^+$ complex is formed. Analogous results are obtained in CH3CN and DMF.

Magnetic Measurements. The magnetic moment for a solution that contains 50 mM $[Zn^{11}(DMU)_{6}](ClO₄)_{2}$ and 50 mM DTBSQ⁻ (generated electrochemically) in Me₂SO is 1.85 μ_B (on the basis of the measured susceptibility and the assumption of a mononuclear $\text{Zn}^{\text{II}}(\text{DTBSQ})^+$ complex). If the DTBSQ⁻ anion is produced by reaction of $DTBQ$, $DTBCH₂$, and 2 equiv of base, the magnetic moment for a solution with a 1:l Zn- (II):DTBSQ⁻ mole ratio is 1.82 μ_B . Both results are consistent with the formation of a stable $\bar{Z}n^{II}(DTBSQ)^+$ complex.

Discussion and Conclusions

The electrochemical (Figure 1 and 2) and spectroscopic (Figure 3) data indicate that Zn(I1) forms stable 1:l complexes with the DTBC²⁻ and DTBSQ⁻ anions in aprotic media. However, the reduction of free DTBQ in the presence of $Zn(II)$ (to form $Zn^{II}(DTBSQ)^+$) and the reduction of the $\text{Zn}^{\text{II}}(\text{DTBSQ})^+$ complex (to form $\text{Zn}^{\text{II}}(\text{DTBC})$) occur at approximately the same potential $(-0.28 \text{ V} \text{ vs. } \text{SCE})$ in Me_2SO and DMF (at slow scan rates (1 mV s^{-1}) a slight peak separation of about 20 mV is observed, and in $CH₃CN$ two distinct one-electron peaks are observed). Hence, the reduction mechanism is believed to consist of two sequential one-electron processes: TBSQ)⁺ complex (to form Zn^{II}(DTBC)) occur at ap-
nately the same potential (-0.28 V vs. SCE) in Me₂SO
MF (at slow scan rates (1 mV s⁻¹) a slight peak sepa-
of about 20 mV is observed, and in CH₃CN two distinct
e F (at slow scan rates (1 mV s⁻¹) a slight peak sepa-
about 20 mV is observed, and in CH₃CN two distinct
tron peaks are observed). Hence, the reduction
sm is believed to consist of two sequential one-electron
s:
 $n(II) +$

$$
Zn(II) + DTBQ + e^{-\frac{-0.28 V}{2}} Zn^{II}(DTBSQ)^{+}
$$
 (1)

$$
Zn^{11}(DTBSQ)^{+} + e^{-\xrightarrow{-0.28 V} Zn^{11}(DTBC)}
$$
 (2)

The spectroscopic and electrochemical data establish that a 1:1 combination of $Zn(II)$ and DTBSQ⁻ yields stable Zn^{II} -(DTBSQ)'. Furthermore, electrolysis at **-0.5** V to the extent of 1 equiv of reduction for a 1:1 combination of $Zn(II)$ and DTBQ yields 1 equiv of a stable $\text{Zn}^{\text{II}}(\text{DTBSQ})^+$ solution. The spectroscopic and electrochemical data establish that a
1:1 combination of Zn(II) and DTBSQ⁻ yields stable Zn^{II}-
(DTBSQ)⁺. Furthermore, electrolysis at -0.5 V to the extent
of 1 equiv of reduction for a 1:1 comb 1.1 comonation of $\text{Zn}(1)$ and DTSSQ yields stable Zn^{-1}
(DTBSQ)⁺. Furthermore, electrolysis at -0.5 V to the extent
of 1 equiv of reduction for a 1:1 combination of $\text{Zn}(II)$ and
DTBQ yields 1 equiv of a s

The electrochemical reoxidation of the $Zn^H(DTBC)$ complex occurs in two well-defined steps:

$$
[Zn^{11}(DTBC)] \xrightarrow{-0.03 \text{ V}} [Zn(DTBSQ)]^{+} + e^{-} E_3^{\circ} \qquad (3)
$$

$$
[Zn(DTBSQ)]^+ \xrightarrow{+0.23 \text{ V}} Zn(II) + DTBQ + e^- E_4^{\circ} (4)
$$

If the solutions contain an excess of DTBQ or DTBSQ⁻ relative to Zn(II), the initial reduction is followed by an equilibration and disproportionation reaction: THEC)] $\xrightarrow{+0.23 \text{ V}} [Zn(D1 BSQ)]^+ + e^{-t} E_3^{\circ}$ (3)

TBSQ)]⁺ $\xrightarrow{+0.23 \text{ V}} Zn(II) + DTBQ + e^{-t} E_4^{\circ}$ (4)

lutions contain an excess of DTBQ or DTBSQ⁻ relative

I), the initial reduction is followed by an equilibration

prop

$$
Zn(II) + DTBQ + 2e^{-\frac{-0.3 V}{2}} Zn^{II}(DTBC)
$$
 (5)

$$
Zn^{II}(DTBC) + DTBQ = Zn^{II}(DTBSQ)2
$$
 (6)

The resultant bis(semiquinonato) complex, $\text{Zn}^{\text{II}}(\text{DTBSQ})_{2}$, is reduced by a one-electron process: and disproportionation reaction:
 $Zn^{[1]} + DTBQ + 2e^{-\frac{-0.3 V}{2}} Zn^{[1]} (DTBC)$ (5)
 $Zn^{[1]} (DTBC) + DTBQ \rightleftharpoons Zn^{[1]} (DTBSQ)_2$ (6)

The resultant bis(semiquinonato) complex, $Zn^{[1]} (DTBSQ)_2$,

is reduced by a one-electron process:
 $Zn^{[1$

$$
Zn^{II}(DTBSQ)_{2} + e^{-\frac{-0.37 V}{2}} [Zn^{II}(DTBC)(DTBSQ)]^{-}
$$
 (7)

The mixed-ligand complex from this reduction is hydrolyzed and disproportionated by residual water in the solvent, and any free DTBSQ- anion is hydrolyzed and disproportionated by residual water:

$$
2Zn^{11}(DTBC)(DTBSQ)^{-} + H_{2}O \rightleftharpoons
$$

2Zn¹¹(DTBC) + DTBCH⁻ + DTBQ + OH⁻ (8)

The disproportionation of DTBSQ⁻ appears to be catalyzed by the zinc(I1) complexes. For systems with three or more $DTBQ$ molecules per $Zn(II)$ ion, the voltammograms include reduction peaks for free DTBQ and DTBSQ-4 DTBSQ)⁻ + H₂O \rightleftharpoons
^{II}(DTBC) + DTBCH⁻ + DTB
ionation of DTBSQ⁻ appears is
complexes. For systems with
les per Zn(II) ion, the voltamm
is for free DTBQ and DTBSQ-
DTBQ + e^{--0.50 V}-DTBSQ-
DTBQ + e^{--1.35 V}-D 1^{14} (DTBC) + DTBCH + DTBC
tionation of DTBSQ⁻ appears to
) complexes. For systems with ti
les per Zn(II) ion, the voltammog
ks for free DTBQ and DTBSQ⁻⁴
DTBQ + e⁻ $\frac{-0.50 \text{ V}}{-0.50 \text{ V}}$ DTBSQ⁻
DTBSQ⁻ + e⁻ becules per Zn(II) ion, the voltammograms include
peaks for free DTBQ and DTBSQ⁻⁴
DTBQ + e⁻ $\frac{-0.50 \text{ V}}{2}$ DTBSQ⁻ (9)
DTBSQ⁻ + e^{- $\frac{-1.35 \text{ V}}{2}$ DTBC²⁻ (10)
lation peaks for DTBC²⁻ and DTBSQ⁻⁴
DTBC²⁻}

$$
DTBQ + e^{-\frac{-0.50 \text{ V}}{2}} DTBSQ^{-}
$$
 (9)

$$
DTBSQ^{-} + e^{-\frac{-1.35 \text{ V}}{2}} DTBC^{2-}
$$
 (10)

and reoxidation peaks for DTBC²⁻ and DTBSQ⁻⁴

$$
DTBQ + e^{-} \xrightarrow{-0.50 \text{ V}} DTBSQ^{-}
$$
 (9)
\n
$$
DTBSQ^{-} + e^{-} \xrightarrow{-1.35 \text{ V}} DTBC^{2-}
$$
 (10)
\ndation peaks for DTBC²⁻ and DTBSQ⁻⁴
\n
$$
DTBC^{2-} \xrightarrow{-1.17 \text{ V}} DTBSQ^{-} + e^{-} E_{11}^{\circ} \qquad (11)
$$
\n
$$
DTBSQ^{-} \xrightarrow{-0.43 \text{ V}} DTBQ + e^{-} E_{12}^{\circ} \qquad (12)
$$
\nmolecular reaction of eq 6 yields $Zn^{11}(DTBSQ)_2$,

$$
DTBSQ^{-} \xrightarrow{\text{--}0.43 \text{ V}} DTBQ + e^{-} E_{12}^{\bullet} \qquad (12)
$$

The intermolecular reaction of eq 6 yields $\text{Zn}^{\text{II}}(\text{DTBSQ})_2$,

which is oxidized by two one-electron steps to give free $Zn(II)$ and DTBQ:

edox Chemistry of Metal–Catechol Complexes
hich is oxidized by two one-electron steps to give free Zn(II)
od DTBQ:

$$
Zn^{II}(DTBSQ)_2 \xrightarrow{-0.31 \text{ V}} Zn^{II}(DTBSQ)^+ + DTBQ + e^-
$$

(13)
 $Zn^{II}(DTBSQ)^+ \xrightarrow{+0.18 \text{ V}} Zn(II) + DTBQ + e^-$ (14)
Reference to Figure 3 indicates that the Zn^{II}(DTBSQ)⁺
Therefore is either a sideates that the Zn^{II}(DTBSQ)⁺

$$
Zn^{II}(DTBSQ)^{+} \xrightarrow{+0.18 \text{ V}} Zn(II) + DTBQ + e^{-} (14)
$$

Reference to Figure 3 indicates that the $\text{Zn}^{\text{II}}(\text{DTBSQ})^+$ complex is stable with an absorption maximum $(\lambda_{\text{max}}$ at 740 nm $(6.500 \text{ M}^{-1} \text{ cm}^{-1})$. However, for those systems with 2:1 and 3:1 mole ratios of DTBSQ⁻ relative to $Zn(II)$, the spectra indicate that significant free DTBQ $(\lambda_{\text{max}} 400 \text{ nm})$ (ϵ 1750 M⁻¹) cm^{-1}))⁴ is formed via intra- and intermolecular disproportionation of the $\text{Zn}^{\text{II}}(\text{DTBSQ})_2$ complex and its interaction with DTBSQ⁻ $(\lambda_{\text{max}} 650 \text{ nm} (6820 \text{ M}^{-1} \text{ cm}^{-1}))$:

$$
Zn^{II}(DTBSQ)_2 \rightleftharpoons Zn^{II}(DTBC) + DTBQ \quad K_{15} \quad (15)
$$

$$
Zn^{II}(DTBSQ)_{2} + DTBSQ^{-} \rightleftharpoons
$$

$$
Zn^{II}(DTBC)(DTBSQ)^{-} + DTBQ \quad K_{16} \ (16)
$$

Analysis of the spectral data for the 2:l and 3:l systems, respectively, yields approximate values for these two equilibrium constants for Me₂SO solutions: $K_{15} = 4 \times 10^{-5}$ M and $K_{16} = 1.9$. Hence, the degree of disproportionation of the $\text{Zn}^{\text{II}}(\text{DTBSQ})_2$ complex is increased by dilution of its solutions and by the addition of excess DTBSQ-. For the experimental conditions of Figure 3, the 2:1 DTBSQ: $Zn(II)$ system is primarily (about 85 mol *7%)* in the form of the bis complex, $\text{Zn}^{\text{II}}(\text{DTBSQ})_2$ (λ_{max} 730 nm (ϵ 1075 M⁻¹ cm⁻¹)).

Because there is no apparent interaction between Zn(I1) and DTBQ, the shift in oxidation potential for Zn"(DTBSQ)+ **(eq** 4, Figure 2) relative to that for free DTBSQ- (eq 12, Figure 2) provides an approximate measure of the stability constant for the $\text{Zn}^{\text{II}}(\text{DTBSQ})^+$ complex in Me₂SO. Consideration of the voltammetric data for free DTBSQ- and DTBQ (Figures 1 and 2) and eq 9 and 12 indicates that the thermodynamic redox potential (E_{12}°) for the DTBSQ⁻/DTBQ couple has a value between $E_{p,a}$ (-0.43 V) and $E_{p,c}$ (-0.50 V); a reasonable estimate is that

$$
E_{12}^{\circ} \sim E_{p,a} - (\Delta E_{p/2}) \approx E_{p,a} - 0.03_5 = -0.46 \text{ V vs. SCE}
$$
\n(17)

In the case of the $Zn(DTBSQ)^+/[Zn(II) + DTBQ]$ couple (Figures 1 and 2, eq 2 and 4), the thermodynamic redox potential $(E_4^{\circ\prime})$ must have a value between $E_{p,a}$ (+0.23 V) and $E_{p,c}$ (-0.28 V). This substantial peak separation is believed to be the result of two *ec* processes rather than slow electron-transfer kinetics:⁹

$$
Zn(DTBSQ)^{+} \xleftarrow{\text{Ep}, \alpha} [Zn(DTBQ)^{2+}] + e^{-}
$$
\n
$$
\begin{array}{|l|}\n\hline\n\end{array}
$$
\n
$$
Zn(II) + DTBSQ^{-} \xleftarrow{\text{Ep}, \alpha} Zn(II) + DTBQ
$$
\n(18)

If such a reaction sequence is assumed, then a reasonable postulate is that the initial voltammetric oxidation of Zn- $(DTBSQ)^+$ is as facile as the oxidation of free DTBSQ⁻. Thus, the value of E_4^{\bullet} can be approximated by use of the relation for the DTBSQ-/DTBQ couple (eq 17)

$$
E_4^{\circ} = E_{p,a} - 0.03_5 = +0.20 \text{ V vs. SCE} \qquad (19)
$$

Subtraction of eq 4 from eq 12 (with these estimated values for E_4° and E_{12}°) gives

$$
Zn(II) + DTBSQ^{-} \rightleftharpoons Zn(DTBSQ)^{+} \quad K_{f(Zn(DTBSQ))} \tag{20}
$$

The difference in formal potentials, $\Delta E_{12,4}^{\circ}$ \sim = E_{12}° \sim E_{4}° , provides a direct measure of $K_{f(Zn(DTBSQ))}/[Zn(II)]$:

 $\Delta E_{12.4}^{\circ}$ \sim = -0.66 = -0.059 log $(K_{f(Z_n(DTBSQ))}/[Z_n(I)])$ (21)

$$
K_{f(Zn(DTBSQ))}/[Zn(II)] = 10^{0.66/0.059} = 1.44 \times 10^{11}
$$
 (22)

A reasonable estimate for the concentration of free zinc ion at the electrode surface during the voltammetric measurement of $E_{p,a}$ (and estimation of E_4°) is 1.5 mM Zn(II). Substitution in eq 22 yields an approximate value for $K_{f(Z_n(DTBSO))}$ in Me₂SO of 2×10^8 M⁻¹.

The shift in the peak potential for the oxidation of $\mathbb{Z}n^{II}$ (D-TBC) (eq 3, Figures 1 and 2) relative to that for free DTBC²⁻ **(eq** 11, Figure 1) provides an approximate measure of the ratio of the stability constants $K_{f(Zn(DTBC))}/K_{f(Zn(DTBSQ))}$, where

$$
K_{f(Zn(DTBC))} = [Zn^{II}(DTBC)]/([Zn^{II}][DTBC^{2-}])
$$
 (23)

On the basis of arguments analogous to those for the evaluation of the formal potentials $(E_4^{\circ}$ and E_{12}° for the $Zn(DTBSQ)^+$ system, the formal potentials for the reactions of eq 3 and 11 can be estimated from the voltammetric data $[(E_{n,a})_3]$ and and the relation of eq 17. This approach yields approximate values of $E_3^{\circ} = -0.06$ V $(E_{p,a} = -0.03$ V, $E_{p,c} =$ V).¹⁴ Subtraction of eq 3 from eq 11 (with these estimated -0.28 V) and *Ello'* = - 1.20 V *(E,,,* = -1.17 V, *E,,* = -1.35

values for
$$
E_3^{\circ\prime}
$$
 and $E_{11}^{\circ\prime}$) gives
\n $Zn(DTBSQ)^+ + DTBC^2 = Zn(DTBC) + DTBSQ^-$

$$
K_{24} = K_{f(Zn(DTBC))}/K_{f(Zn(DTBSQ))}
$$
 (24)

The difference in formal potentials, $\Delta E_{11,3}^{\circ}$ $\leq E_{11}^{\circ}$ $\leq E_{3}^{\circ}$, provides a direct measure of the ratio (K_{24}) for the two stability constants:⁹

$$
\Delta E_{11,3}^{\text{S}} = -1.20 - (-0.06) =
$$

-0.059 log (*K₆₇-*(DTBC)) / *K₆₇-*(DTBC)) (25)

$$
-0.059 \log (K_{f(Zn(DTBC))}/K_{f(Zn(DTBSQ))})
$$
 (25)

$$
K_{f(Zn(DTBC))}/K_{f(Zn(DTBSQ))} = 10^{1.14/0.059} = 1.88 \times 10^{19}
$$
 (26)

Substitution of the estimated value for $K_{f(Zn(DTBSQ))}$ (2 × 10⁸) into eq 26 yields a value for $K_{f(Zn(DTBC))}$ of 4×10^{27} M⁻¹.

The preceding analyses provide quantitative evidence that the complexation of zinc ion by the DTBC²⁻ and DTBSQ⁻ anions in aprotic media is exceptionally strong. The inertness of Zn(I1) to electron transfer precludes the intramolecular redox processes in the $\text{Zn}^{\text{II}}(\text{DTBSQ})^+$ complex that destabilize the DTBSQ⁻ complexes of $Mn(II)$,¹ Fe(II),² and V(IV).³ The stability of the $\text{Zn}^{\text{II}}(\text{DTBSQ})^+$ species makes it possible to observe a clean one-electron oxidation of the $\text{Zn}^{\text{II}}(\text{DTBC})$ complex. Such a pathway probably is used for the electrontransfer oxidation of all metal catechol complexes but is obscured by intramolecular electron transfers for reduced redox-active metal ions (e.g., $Mn(II)$, $Fe(II)$, and $V(IV)$). The formation of the stable semiquinonato complexes of zinc(I1) $(Zn^{II}(DTBSQ)^{+}, Zn^{II}(DTBSQ)_{2}$, and $Zn^{II}(DTBC)(DTBSQ)^{-}$ provides versatile one-electron pathways for the oxidation and reduction of the catechol-quinone system which may be pertinent to the redox chemistry of related systems in biology.

Acknowledgment. This work was supported by the National Science Foundation under Grant No. CHE79-22040 and by the Catholic University of Chile under Grant No. 119/81.

Registry No. DTBQ, 3383-21-9; Zn, 7440-66-6; Zn"(DTBSQ)+, 83365-27-9; Zn"(DTBC), 83365-28-0.

⁽¹⁴⁾ The average of the anodic and cathodic peak potentials provides an alternative estimate of the formal potentials; $E_3^{\circ\circ} = -0.15$ V and $E_{11}^{\circ\circ} = -1.26$ V with $\Delta E_{11,3}^{\circ\circ} \approx -1.11$ V.